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Abstract -

In monitoring disaster sites, mobile robots represent a
fast, reliable, and practical option to remotely inspect active
areas in disaster management for applications such as risk
management, search and rescue, and structural assessment
purposes. Mobile robots can efficiently collect laser scan data
and reconstruct the state of ongoing disaster relief in the form
of 3D point clouds. Current point cloud processing methods
are mostly designed to work as a post-processing step and
are inefficient when applied in real-time. Additionally, ob-
ject segmentation on point cloud data from the disaster sites
is challenging due to data impurities and occlusions. To over-
come these issues, this paper proposes an instance point cloud
segmentation method that incrementally builds a 3D map for
robotic scans of infrastructure. In the first step, the proposed
neural network, named Dynamic Graph PointNet (DGPoint-
Net), is trained to classify objects in the disaster environment
while building up a semantic 3D map of the environment.
Additionally, the proposed method predicts object instance
labels by using a sequence of predicted semantic point cloud
data. The proposed method shows strong performance over
the state of art segmentation models in terms of semantic seg-
mentation, instance segmentation, and processing time using
point cloud data collected from a custom-built laser-scanning
robot at an outdoor simulated disaster site.

Keywords -
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1 Introduction

In disaster sites, mobile robots represent a safer and
more labor-efficient option to carry out inspection tasks
such as risk estimation and assessment of damaged build-
ing in post-disaster sites for reconstruction of damaged
constructions. According to the NOAA’s National Centers
for Environmental Information, the natural disaster costs
the U.S. over $600 billion in the last 5 years (2016-2020)
[1]. Current damage assessment and quality inspections
often involve a long inspection activity that requires in-
spectors to collect data on the disaster sites due to difficulty
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Figure 1. Overall framework for collecting and pro-
cessing 3D point clouds from disaster sites.

in accessing disaster sites. The inspection process often
involves safety concerns such as exposing toxic chemical
to human being and building collapse.

Due to the safety concerns and recent development in
computing technology, mobile robots can be used to col-
lect laser scan data and reconstruct the as-is state of various
building entities on the site in the form of 3D point clouds
[2, Bl 4]]. Several methods use mobile robots to moni-
tor the condition of damaged building in the disaster sites
such as mapping disaster sites with ground robot [5] and
with an aerial robot [6]. Even though a large amount of
point cloud data can be easily collected, the process of au-
tomatically organizing and extracting useful information
from the noisy data remains a challenging task. Especially
in the disaster sites, the collected data often includes in-
complete objects such as collapsed buildings and damaged
objects. The mobile robot needs to perform segmentation
of the acquired data to carry out obstacle detection, object
recognition, and other scene understanding tasks. Cur-
rent segmentation methods are mostly designed to process
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point cloud data one at a time and are applied only as
a post-processing step. In addition, segmentation meth-
ods that are trained with complete models of objects do
not work well because robotic scans are usually noisy or
occluded.

This paper proposes an incremental point cloud seg-
mentation method for robotic scans of disaster sites using
a 3D Light Detection and Ranging (Lidar) sensor. The
scans are first registered based on simultaneous localiza-
tion and mapping (SLAM) and stored in a voxel-based
lookup table. The registered point cloud is then passed to
the proposed deep learning model, named Dynamic Graph
PointNet (DGPointNet) that predicts semantic object la-
bels. The DGPointNet is robust to detect objects with data
impurities and occlusions by learning both local neighbor
and global point features. The output of the deep learning
model is then processed with incremental segmentation al-
gorithm that merges new scan points into existing points to
form instance clusters based on similarity in feature space.
The proposed method is incremental in that each new scan
is processed and combined with information from previ-
ous scans without having to recompute the entire scene.
Results are then used to create a 3D object-level map of
the disaster site. The proposed method is validated using
point cloud data collected from a laser scanning robot at
an outdoor simulated disaster site shown in Figure[I] The
key contributions of the proposed method are summarized
as follows:

* Fast online instance segmentation that directly takes
an input of Lidar scanned data and outputs predicted
instance object labels

* Development of a light weight deep learning model
suitable for dataset from an outdoor environment with
impurities and occlusions.

* Evaluation of semantic and instance segmentation
methods using dataset from a real-world simulated
post disaster sites environment.

2 Related work

2.1 Geometry-based segmentation

In the past, several approaches use geometric segmenta-
tion methods that rely on surface normals, curvatures, and
edge. Hough Transform and the Random Sample Consen-
sus have also been widely employed as fundamental al-
gorithms for detecting simple geometric objects based on
their model parameters [7, [8]]. Until recently, RANSAC-
based algorithms for the plane segmentation has continued
to be improved [9,[10]. Clustering is another common step
for point cloud segmentation. Region growing which pro-
gressively gathers nearby points regarded as the same class

or regions with cohesive features, has been a widely used,
and even a learnable model for region growing has been
developed [[11]. Using density-based spatial clustering
of applications with noise (DBSCAN), Czerniawski et al.
[12] proposed a method to detect planar objects in indoor
scenes. However, the methods referring to geometry fea-
tures have limitations in being robustly applied to a disaster
site of highly unstructured environment, containing varied
noise and deformed objects with complex geometry not
fitting to predefined geometry features.

2.2 Data-driven models for segmentation

With the growing popularity of data-driven models,
deep architectures for classifying each 3D point into se-
mantic categories have made significant progress [[13}[14].
Compared to ones using hand-crafted features, these deep
architectures show better performance and robustness, but
still are in active development due to issues such as spar-
sity, randomness, and the unstructured nature of point
clouds. As an indirect method, to facilitate convolutional
neural networks for the segmentation, researchers have
converted a point cloud into a regular structure prior to
the processing, such as multi-views [[15], voxel grids [[16].
However, since these data conversion cause information
loss and computational complexity, PointNet [[17] directly
process each point by extracting robust features from the
transformation and permutation of the point cloud. Since
then, many methods based on PointNet have been pro-
posed, referring to the direct processing of each point
[[14]. To find optimistic receptive field for the segmen-
tation task, Qi et al. [18] adopted a multi-scale concept
which recursively extracted local features using PointNet
layer, and enhanced the results of segmentation, but, the
inference time increased several times. Regarding a point
cloud as structured graph data composed of a series of
nodes and edges, Wang et al. [19] proposed DGCNN by
replacing multi-layers of PointNet with stacks of edge con-
volution from Graph Convolutional Networks. It shows a
significant effect in extracting analogous features but in-
creases the complexity of the network as well as number
of the training parameters. Since the methods based on
GCNN, compare to others, have advantages in examining
the boundary feature, researchers have now increasingly
adopted these graph-based algorithms [20} 21]. Other
data-driven models such as Point Transformer [22] and
SCF-Net [23]] are not considered in this study due to the
slow inference speed of the models.

2.3 Incremental Segmentation

Although researchers have proposed many segmenta-
tion models so far, to leverage them integrated with robotic
scanning in real-world sites, one thing that needs to be
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Figure 2. 3D point cloud processing framework.

added is incremental segmentation, which progressively
updates class labels of the point in a dynamic fashion while
collecting data simultaneously. To understand scenes even
when the entire site is not scanned, researchers have pro-
posed a method to supplement the segmentation results
with online data in varied situation [24, [25| 26]]. Fin-
man et al. [24] proposed a method to combine partially
segmented results by iterative voting from RGB-D maps.
Dube et al. [25] selectively updated dynamic voxel grids
online and adopted incremental fashion in region growing
algorithm while caching the geometric consistencies. Un-
like others, Multi-view Context Pooling Network based on
PointNet, Chen et al. [27] proposed, implicitly updated an
instance id of each point online using the deep network that
was directly trained from the raw point cloud annotation.
By suggesting a pooling operation to assemble local fea-
tures from neighbor points to the global features, MCPNet
updated each point while reflecting the contextual infor-
mation of neighbors.

However, these methods were applied on limited dataset
of indoor environments or confined outdoor sites. The goal
of the proposed method is to perform incremental instance
segmentation on real-world disaster sites. The proposed
method directly consumes points from the scanned data
and performs the incremental segmentation while fusing
local features to the global features, especially using on-
line data collected by the unmanned ground vehicle from
challenging disaster site environments with a significant
amount of debris and deformed objects.

3 Methodology

3.1 Overview

This research proposes a robotic scanning and point
cloud segmentation framework for identifying construc-
tion related objects from post disaster sites. Figure[2]shows
an overall data collection and processing framework where
each distinct object is segmented into an object instance.
In the first step, an input point cloud is captured by a laser
scanning device using a mobile robot. Then, the simul-
taneous localization and mapping (SLAM) module takes
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the point cloud data and registers points to reconstruct a
3D map of the damaged building structures around the
robot. For each point cloud scan, the semantic segmenta-
tion module (DGPointNet) classifies object classes in the
registered point cloud and outputs a set of semantic object
labels. In the final step, the instance segmentation mod-
ule uses the predicted semantic labels to estimate object
instance labels by grouping points from the current and
previous laser scans. The end result of the point cloud
data processing framework is a densely labeled 3D map
of the disaster site that contains information about the ob-
stacles, building elements, and debris in the surrounding
environment. The following sections provide more details
regarding methods and design choices.

3.2 3D input data and registration

The proposed 3D data registration method is visualized
in Figure [3] where the input data is a raw laser scanned
point cloud that is represented as unordered 3D points that
contains position vectors (x, y, z). As the mobile robot is
moving around the disaster site, laser scan data is collected
along with Inertial Measurement Unit (IMU) and Global
Positioning System (GPS) measurements. A SLAM mod-
ule based on the LeGO-LOAM [28§]] algorithm is used to
localize the robot using sensor measurements. Each laser
scan is registered on to the global coordinate system by ap-
plying a transformation matrix based on the robot’s pose at
each time step. These registered point clouds are used to
train and evaluate semantic segmentation model described
in the next sections.

Inputs Data SLAM
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1 Lidar Scan \

| (x,y,2) points || .
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\ ]
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Registered Point Cloud

Figure 3. Automated point cloud registration step to
generate the input dataset for our framework.
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Figure 4. The proposed DGPointNet architecture for point cloud semantic segmentation.

3.3 Semantic segmentation with DGPointNet

Semantic segmentation is performed with a deep neural
network to assign semantic class labels to each point. The
semantic labels consist of classes such as ground, clutter,
wall, etc. that are used to differentiate between different
objects on the disaster site. The proposed deep learning
architecture is shown in Figure[d] The proposed network
combines elements from both PointNet [[17]] and DGCNN
[19], integrated into a single neural network. The ad-
vantage of this model is that it combines the benefits of
PointNet for learning the global context of the input point
cloud data and DGCNN for learning the local context of
the input point cloud using the edge convolution layers.

The proposed model first takes a set of n points with
feature vectors including position vector (x, y, z) and nor-
malized z position to each data scene (a real number rang-
ing from O to 1) and passes them through input and spatial
transform layers. In the PointNet module (yellow box in
Figure @), both input and feature transform use a T-Net
that applies an affine transformation to the given point
cloud inputs. The points are then passed through a se-
ries of convolution layers and multi-layer perceptron. The
points features are aggregated using a max pooling layer
to obtain a global feature. The outputs of the intermediate
multi-layer perceptron and global features are concate-
nated to a shared multi-layer perceptron. Similarly, in the
DGCNN module (blue box in Figure ), the points are
passed through a series of edge convolutions and multi-
layer perceptrons. The edge convolution layer applies k

nearest neighbor algorithm to group input points into k
feature clusters and aggregates the features by a max pool-
ing layer. The outputs of each edge conv layers and global
features are concatenated to a shared multi-layer percep-
tron. The model predicts n x m vectors as outputs for n
input points and m semantic classes.

3.4 Incremental instance segmentation

An incremental instance segmentation module is re-
sponsible for clustering the predicted points from the se-
mantic segmentation module into individual object in-
stances. For example, given a set of points corresponding
to wall objects, the instance segmentation module will
cluster the points into wall #1, wall #2, wall #3, etc. This
step is important for identifying the number of building
elements on the disaster site and for assigning damage in-
formation to each individual building element. The overall
algorithm is specified in Algorithm [T} The method first
initializes a voxel grid dictionary v to remove duplicate in-
put points from the segmentation outputs. The voxel grid
allows the proposed method to only update the instance
labels for the newly-scanned regions and reduce computa-
tion time so that the method can run online on the mobile
robot. The update list u is used to store new points that are
used in the clustering method. The distance limit k is used
aneighborhood threshold to append all neighboring points
in the x, y, z position for each point in the updated points
list. The surface normal threshold and semantic label are
both used to group the updated point into existing clusters.
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If the updated point does not match with an existing object
instance, a new object instance is created.

Algorithm 1: Incremental instance segmentation

Input: Point cloud data with semantic
segmentation labels

Result: Point cloud data with instance
segmentation labels

Initialize updated points list u «— @

Initialize voxel grid dictionary v « 0

Initialize neighbor points list w <« 0

for each point in input data do

if point does not exists in voxel grid then
| Append point to the end of v and u

end

end

for each updated point do

Append all points within k distance from
update point to w;

for each nearest point do
| Compute surface normals

end

if updated point > surface normal threshold
and updated point class ID == neighbor point
class ID then
| Add to the existing object instance

else
| Initialize a new object instance

end

u—0w«20

end

4 Results
4.1 Experimental setup and dataset

A field experiment was conducted at the Guardian Cen-
ters disaster training facility (Figure [5). The Guardian
Centers facility consists of numerous damaged concrete
structures that are cracked, deformed, or collapsed. In this
experiment, a 4-wheel ground mobile equipped with a 3D
Lidar sensor, IMU, and GPS sensor is used to collect laser
scan data at the site. The 3D Lidar sensor is a Velodyne
VLP-16 which has 16 beams, angular horizontal and verti-
cal resolution of 0.1° —0.4° and 2°, accuracy of +3cm, and
measurement range of 100 m. The semantic object classes
consist of 8 different categories such as clutter, ground,
wall, beam, girder, slab, column, door. The collected
point cloud data is downsampled to 0.1m to reduce point
cloud size. To eliminate sparse Lidar data, each scanned
data is limited by +£15m in x, y, z coordinates.

To evaluate the performance of semantic and instance
segmentation, a total of 9 robot scanned data with the
Velodyne Lidar at a different part of the disaster sites
scene are collected. 7 point cloud scenes are used as the
training set and 2 point cloud scenes are used as the test
set. Each scanned data consists of 2-3 minutes sequential
points that cover a part of the simulated test sites.
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Figure 5. A mobile robot deployed to collect laser
scans at the Guardian Centers disaster training facil-

ity.

4.2 Semantic segmentation results

The proposed method is compared with PointNet and
PointNet++ models in terms of point accuracy and average
Intersection over Union (IoU) using the test dataset shown
in Table [l These baseline models are the state of art
deep learning models that directly take point cloud data
with geometry features and output predictions of semantic
point labels. The input points size of these models are
set to 4096 points with a block size of 10x10 (m). The
input points consist of feature vectors with x, y, z position
and normalized z position to each test data scene. The
clustering hyper-parameters k used in the DGPointNet is
set to 20.

In terms of mean IoU and point accuracy, the proposed
method shows the highest mIoU score of 55.1 % and the
highest point accuracy of 77.8 %. Table 2] shows results
of individual IoU performance per object class. The pro-
posed method achieves the highest IoU for every object
category. The proposed model shows strong performance
on the small objects such as beam, girder, and door cate-
gories. The performance of the proposed method is visu-
alized in Figure[6]

Table 1. Segmentation results evaluated in terms of
mloU and point accuracy on the Guardian Centers
dataset using the test dataset.

Method mloU (%) Point Acc.(%)
PointNet 414 68.6
PointNet++ [18] 28.2 57.9
Proposed DGPointNet 55.1 77.8

4.3 Instance Segmentation Results

The instance segmentation results are evaluated using
the metrics of normalized mutual information (NMI), ad-
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Figure 6. Results of semantic segmentation on the test dataset.

Table 2. Semantic segmentation results of each class on the Guardian Centers dataset. The evaluation metric is

IoU(%) on the test dataset.

Object Class total clutter ground beam wall girder slab column  door
Test points - 293673 127929 24495 261549 12212 147952 57449 2477
PointNet [17] 41.4 532 63.2 48.6 61.2 239 47.6 22.7 11.1
PointNet++ [18] 28.2 523 51.9 33.6 37.2 12.8 29.1 8.4 0.0
Proposed 55.1 63.3 68.7 55.5 68.2 45.7 66.0 46.1 27.3

justed rand index (ARI), and V measure score (VMS)
(29, [30]. In Table 3] the proposed method is compared
with other baseline deep learning models to validate the
evaluation metrics. The result shows that the proposed
method achieves the second-best result among the base-
line models. The results of instance segmentation using
DGPointNet is visualized in Figure[7] The bounding boxes
show individual objects are separated from each other.

Table 3. Instance segmentation and classification re-
sults on the test dataset.

Method NMI AMI VMS
PointNet [17] 344 337 344
PointNet++ [[18] 371 357 37.1
Proposed DGPointNet 353 339 353

4.4 Computation time evaluation

Table [ shows the computation time and average
points processed per scan measured on Intel® Core™ i9-
10980HK CPU and NVIDIA GeForce RTX 2080 GPU.
The proposed method has a relatively fast computation
speed of 1.18 s per scan compared to the PointNet++ mod-
els while the average processed points are 5742 points.

This result shows that the proposed method can be applied
in near real-time.

Table 4. Computation time and average points pro-
cessed on the Guardian Centers dataset.

Method Time (s) Points per scan
PointNet [[17]] 0.43 5627
PointNet++ [[18]] 15.72 6052
Proposed DGPointNet 1.18 5742

5 Conclusions

In this work, the proposed method shows a novel pro-
cess that directly takes raw point cloud data and predicts
instance labels in near real-time. The semantic segmenta-
tion network learns from both local neighbor and global
point features through PointNet and DGCNN. This model
also shows strong performance on semantic segmentation
of small object with data impurities and occlusions. Ad-
ditionally, the incremental segmentation method clusters
semantic prediction labels into an object instance by inte-
grating a sequence of Lidar scanned data. The proposed
method shows that the semantic and instance segmenta-
tion can both run in near real-time to classify objects on
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Figure 7. Results of Instance segmentation. Each object instance is assigned a different color.

disaster sites data.

While the proposed method shows a fast online segmen-
tation performance, the experiment results indicate that the
model could be revised to improve efficiency for real-time
performance in future research. Additionally, ablation
studies such as hyper parameter tuning of the segmenta-
tion model can be considered to optimize performance of
the proposed method.
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